Язык для программирования искусственного интеллекта

На каком языке пишут искусственный интеллект? Введение в ИИ

Основной вопрос перед разработчиком – какому языку отдать предпочтение для создания ИИ? Мы рассмотрим популярные языки, используемые для создания ИИ.

Одно только лишь название «искусственный интеллект» может привести в ступор и навести немало страха как на обычного человека, так и заурядного программиста. Занятие действительно сложное, а красивые демонстрируемые примеры – это результат многотысячных строк кода. При всём этом создание ИИ может стать вполне реальной задачей, а в части случаев, даже несложной. Многие проекты требуют углублённых знаний ИИ, а также языков программирования.

Наибольшим достоинством языка является многофункциональность, среди прочих:

Для новичков важным достоинством Java станет наличие многочисленных бесплатных уроков в сети. Обучение Java является максимально комфортным и удобным для большинства студентов и новичков.

Среди особенностей языка стоит выделить:

При создании проектов на Java пользователь сталкивается с более привлекательным и доступным интерфейсом, что всегда притягивает аудиторию.

Prolog

Пролог относится к декларативным типам языка, которые используют формальное или образное « мышление ». Среди разработчиков ИИ приобрёл хорошую славу благодаря оптимальным обструкционным типам работы, встроенным алгоритмам анализа, недетерминизма и т.д. Всё в сумме можно описать так: Prolog – многофункциональная платформа для программирования ИИ.

Python

Python активно применяется в программировании благодаря чистому синтаксису и логическому, строгому грамматическому построению программы. Немаловажную роль играет и удобный дизайн.

В основе используются многочисленные структурные алгоритмы, бесчисленные фреймворки для отладки, оптимальным показателям взаимодействия низкого и высокого уровня написания кода. Все перечисленные достоинства обеспечивают должное влияние в сфере создания искусственного интеллекта.

История развития ИИ

Первым роботом мобильного типа стал « Шеки », в его основе также лежал ЛИСП. Логика конструктора была построена на решении поставленных задач и передвижения, для взаимодействия использовались подъёмы вверх и вниз, а также включение и выключение света. С помощью « Шеки » удавалось открывать, закрывать, передвигать и т.д. Робот даже был способен передвигаться со скоростью равной спокойной ходьбе человека – 5 км/ч.

За последние 15 лет было представлено многочисленное количество изобретений: « Деннинг » (сторожевой робот), « Predator » (беспилотник), « АЙБО » (собака), « АСИМО » от Honda и многие другие. Тенденция идёт к развитию данного направления, чего и стоит ожидать в ближайшем и дальнем бедующем.

Источник

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Языки программирования для искусственного интеллекта

Рейтинг языков программирования для ИИ и машинного обучения

Искусственный интеллект (ИИ) – это широкое и растущее технологическое поле, и это означает, что ИИ может быть реализован на разных языках программирования. Однако по-прежнему трудно определить, какой из многих языков следует использовать для разработки ИИ. Поэтому в данном материале мы приведем некоторые из лучших языков программирования ИИ, которые помогут вам реализовать его.

Julia

Julia – это высокоуровневый язык программирования общего назначения, разработанный Джеффом Безансоном, Стефаном Карпински, Вирал Б. Шахом и Аланом Эдельманом в 2009 году. Он разработан с нацеленностью на высокопроизводительный численный анализ и вычислительную науку, поэтому он не включает необходимость отдельной компиляции по скорости. Простой синтаксис и глубокие математические корни делают Julia дружественным языком программирования для аналитиков данных. Он также включает Flux, основу для машинного обучения и ИИ. В сочетании с математическим синтаксисом Julia предлагает идеальный способ выражения алгоритмов. Julia также поддерживает другие платформы машинного обучения, такие как TensorFlow и MXNet.

Haskell

Haskell – стандартизированный, универсальный язык программирования, разработанный с нестрогой семантикой и сильной статической типизацией. Первоначально разработанный в 1990 году, Haskell в основном используется в академических кругах, хотя есть и некоторые примеры его использования в промышленности и коммерции для проектов в AT&T, Facebook, Google и других. Haskell основан на семантике языка программирования Miranda и позволяет эффективным библиотекам реализовывать алгоритмы ИИ.

В отличие от других, R – уникальный язык программирования, а также бесплатная программная среда с открытым исходным кодом для статистических вычислений и графики. Разработанный в 1993 году Росом Ихакой и Робертом Джентльменом, R широко используется среди аналитиков данных для разработки статистического программного обеспечения и анализа данных. Он также используется в искусственном интеллекте нового стиля и общем машинном обучении. R предоставляет несколько парадигм программирования, таких как векторное вычисление, функциональное программирование и объектно-ориентированное программирование и рассматривается как один из основных стандартных языков для таких областей, как финансы, биология и медицина.

C++ был разработан с учетом производительности, эффективности и гибкости, что делает его идеальным выбором для многих проектов программирования ИИ, которым необходима скорость. По сравнению с другими языками программирования, C++ имеет более быстрое выполнение и более низкую задержку, что делает его полезным для поиска решений сложных проблем ИИ. Он также позволяет широко использовать алгоритмы и является эффективным средством написания статистических методов ИИ, таких как нейронные сети.

MATLAB

MATLAB (Matrix Laboratory) является патентованным языком программирования, разработанным MathWorks. Он широко используется многими разработчиками программного обеспечения и разработчиками для анализа краевых систем и проектов ИИ. Это простой в использовании язык со встроенной графикой, которая позволяет разработчикам визуализировать данные и получать от них значимую информацию. MATLAB – хороший выбор для машинного обучения и проектов ИИ при задачах визуализации и выполнения матриц.

Python

Python – широко применяемый язык программирования и может быть использован для реализации ИИ из-за простой и бесшовной структуры, которую он предлагает. Синтаксис Python позволяет легко реализовать различные алгоритмы ИИ, что также позволяет сократить время разработки по сравнению с другими доступными языками программирования. Применение Python позволяет пользователям создавать нейронные сети с набором полезных библиотек, которые могут использоваться для разработки ИИ. Другие функции включают возможность тестирования алгоритмов без необходимости их реализации. Он также поддерживает объектно-ориентированные, функциональные и процедурно-ориентированные стили программирования.

Lisp является одним из самых старых доступных языков программирования, но все же остается одним из предпочтительных вариантов разработки ИИ из-за его уникальных функций. Это, по сути, практическая математическая нотация для компьютерных программ. Разработчики склонны идти на Lisp в машинном обучении его гибкости приспосабливаться к проблеме, которая нуждается в решении. Помимо этого, Lisp также предлагает быстрые возможности прототипирования, библиотеку типов коллекций, поддержку символических выражений и другое.

Java, чрезвычайно популярный язык программирования, также может рассматриваться как хороший выбор для программирования ИИ, поскольку он обеспечивает алгоритмы поиска и нейронные сети. Это простой для понимания язык, который предлагает графическое представление, отладку и масштабируемость. Его портативность делает его предпочтительной реализацией для различных приложений на основе наличия различных встроенных типов.

Источник

Малоизвестные языки для создания искусственного интеллекта

При этом создать искусственный интеллект может каждый, используя практически любой язык программирования, дело лишь в удобстве и возможностях. Но есть языки, созданные или адаптированные специально для ИИ. Одни из них достаточно популярны, другие являются областью знаний ограниченного круга лиц. О последних пойдёт речь сегодня.

Проект A.L.I.C.E. — это не отсылка к известной франшизе «Обитель зла», а название виртуального собеседника, способного разговаривать на человеческом языке. Предпосылки к его появлению датированы 1966 годом и проектом Элиза (ELIZA) — базой данных, построенной по принципу шаблонных ответов. В конце 90-х она получила развитие A.L.I.C.E. в виде новых возможностей или более сложной структуры. Для создания этого и использовался язык AIML (Artificial Intelligence Markup Language).

На самом деле работа на AIML проста до безобразия, даже если вы не слишком знакомы с программированием. Задача сводится к созданию вопроса, либо однозначного, либо с некоторыми неизвестными (замены однотипных слов), и реагирующего ответа, опять-таки или точного, или с заложенной переменной (например, имени, возраста и т. д.). Если вы хоть когда-нибудь играли в компьютерные игры с элементами RPG, то прекрасно понимаете, как подобный алгоритм работает.

Старейший представитель сегодняшнего рейтинга.

Information Processing Language был разработан в 1956 году, является по сути языком ассемблера для списков и лежит где-то на обратной стороне понятности по отношению к AIML. Здесь вам приходится оперировать не человеческим языком, а бесконечным числом символов, регистров, команд и ячеек. Он абсолютно неэффективен в плане построения условного киборга, то есть сложной системы, но определить тип данных или объем выделяемой памяти он сможет невероятно быстро. Если вы конечно сможете на нем что-то создать.

Рассказывать о нём более подробно не имеет большого смысла, так как сегодня он практически не используется, будучи заменённым на куда более удобные и понятные языки.

STRIPS

А вот это очень интересный образец. Название расшифровывается, как Stanford Research Institute Problem Solver и он является так называемым языком действия. Структура программы на STRIPS состоит из трех блоков: начальное состояние; список целей, то есть то состояние, которое в результате должно быть получено; собственно сами действия — основное тело программы.

Вот вам простой пример на языке STRIPS из Википедии. Есть обезьяна, которая находится в точке А, есть бананы, подвешенные в точке B, и есть коробка в точке C, забравшись на которую обезьяна сможет схватить бананы:

Initial state: At(A), Level(low), BoxAt(C), BananasAt(B)
Goal state: Have(Bananas)
Actions:
// move from X to Y
_Move(X, Y)_
Preconditions: At(X), Level(low)
Postconditions: not At(X), At(Y)

// climb up on the box
_ClimbUp(Location)_
Preconditions: At(Location), BoxAt(Location), Level(low)
Postconditions: Level(high), not Level(low)

// climb down from the box
_ClimbDown(Location)_
Preconditions: At(Location), BoxAt(Location), Level(high)
Postconditions: Level(low), not Level(high)

// move monkey and box from X to Y
_MoveBox(X, Y)_
Preconditions: At(X), BoxAt(X), Level(low)
Postconditions: BoxAt(Y), not BoxAt(X), At(Y), not At(X)

// take the bananas
_TakeBananas(Location)_
Preconditions: At(Location), BananasAt(Location), Level(high)
Postconditions: Have(bananas)

Согласитесь, на таком языке хочется попробовать что-то написать самому.

POP-11

Возвращаясь в 60-е годы к первым серьёзным попыткам создать искусственный интеллект, нельзя не упомянуть о языке POP-1, испытавшем на себе влияние многих языков того времени, но не снискавшего славу. К слову, POP-2 был куда успешнее и даже дожил до наших днейю На сегодняшний день актуальной является версия POP-11, предназначенная для работы со средой разработки Poplog (правда, в ней вы также можете использовать LISP, Prolog и Standard ML).

Язык POP-11 является функциональным и мультипарадигмальным, синтаксис заимствован от ALGOL, общий подход к коду больше похож на LISP. Вот маленький отрывок из кода работы с памятью:

define auxmemo(O1, Prop, P,n, ref_i)->O2;

;;; P: Procedure
;;; n: number of values to keep, then the cache is cleared and
;;; memoizing restarts.
;;;
define newmemo(P,n);
newanyproperty([], n, false, false, syshash, nonop=, false, undef,
auxmemo(%P,n,consref(n)%));
enddefine;

Как видно, здесь нет ничего отпугивающего и сильно отличающегося от привычного внешнего вида популярных процедурных языков. Возможности при этом достаточно широкие — от систем обучения до уже упомянутого искусственного интеллекта Элиза.

Wolfram

Язык, разработанный компанией Wolfram Research, входящий в комплект системы компьютерной алгебры Mathematica. Язык мультипарадигмальный, специализирующийся на символических вычислениях, на логическом и функциональном программировании. Несмотря на то, что язык существует с конца 80-х годов 20 века, выпущен официально он был лишь 4 года назад.

Конечно, Wolfram не был разработан специально для искусственного интеллекта, но как и MATLAB, в конце концов пришёл к необходимости обрабатывать данные с учетом моделирования и прогнозирования, работать с нейронными сетями.

Кстати, вот интересный факт, косвенно связанный с Wolfram. Язык пришельцев, который вы могли видеть в недавнем фильме «Прибытие», был разработан создателями Wolfram (отцом и сыном) и частично унаследовал его алгоритмы.

Planner

Последний на сегодня по порядку, но совсем не последний по востребованности, функционально-логический язык Planner. Разработан он был на стыке 60-х и 70-х годов 20 века в MIT и был призван расширить возможности тогда уже популярного языка LISP. В синтаксисе это выражается в повышении удобочитаемости, вызванной, к примеру, возможностью использовать и круглые, и квадратные скобки. Но конечно совсем не это главная его суть.

Главное удобство Planner — это механизмы работы с переменными средами и задачами. При разработке ИИ вы задаёте начальные условия, так называемые «теоремы», описывающие используемую среду. Теорем при этом может быть много, просто в случае несоответствия среды исходные будут отвергаться, а другие подтверждаться. Также в процессе выполнения программы и механизмах перебора могут отвергаться и исключаться из дальнейшего рассмотрения определённые решения, которые не имеют конечного успеха. Обычно подобные вещи программисту приходится реализовывать самостоятельно большим объёмом текста, но в Planner это занимает всего несколько строк. А ведь именно это и есть главный принцип, отличающий язык ИИ от любого другого популярного языка.

Тема искусственного интеллекта тревожит человечество с тех пор, как компьютеры проникли сначала в каждый дом, а потом и в каждый карман. Такое явление, как виртуальный помощник, сегодня не является диковинным, воспринимаясь, как современная обыденность.

При этом создать искусственный интеллект может каждый, используя практически любой язык программирования, дело лишь в удобстве и возможностях. Но есть языки, созданные или адаптированные специально для ИИ. Одни из них достаточно популярны, другие являются областью знаний ограниченного круга лиц. О последних пойдёт речь сегодня.

Проект A.L.I.C.E. — это не отсылка к известной франшизе «Обитель зла», а название виртуального собеседника, способного разговаривать на человеческом языке. Предпосылки к его появлению датированы 1966 годом и проектом Элиза (ELIZA) — базой данных, построенной по принципу шаблонных ответов. В конце 90-х она получила развитие A.L.I.C.E. в виде новых возможностей или более сложной структуры. Для создания этого и использовался язык AIML (Artificial Intelligence Markup Language).

На самом деле работа на AIML проста до безобразия, даже если вы не слишком знакомы с программированием. Задача сводится к созданию вопроса, либо однозначного, либо с некоторыми неизвестными (замены однотипных слов), и реагирующего ответа, опять-таки или точного, или с заложенной переменной (например, имени, возраста и т. д.). Если вы хоть когда-нибудь играли в компьютерные игры с элементами RPG, то прекрасно понимаете, как подобный алгоритм работает.

Старейший представитель сегодняшнего рейтинга.

Information Processing Language был разработан в 1956 году, является по сути языком ассемблера для списков и лежит где-то на обратной стороне понятности по отношению к AIML. Здесь вам приходится оперировать не человеческим языком, а бесконечным числом символов, регистров, команд и ячеек. Он абсолютно неэффективен в плане построения условного киборга, то есть сложной системы, но определить тип данных или объем выделяемой памяти он сможет невероятно быстро. Если вы конечно сможете на нем что-то создать.

Рассказывать о нём более подробно не имеет большого смысла, так как сегодня он практически не используется, будучи заменённым на куда более удобные и понятные языки.

STRIPS

А вот это очень интересный образец. Название расшифровывается, как Stanford Research Institute Problem Solver и он является так называемым языком действия. Структура программы на STRIPS состоит из трех блоков: начальное состояние; список целей, то есть то состояние, которое в результате должно быть получено; собственно сами действия — основное тело программы.

Вот вам простой пример на языке STRIPS из Википедии. Есть обезьяна, которая находится в точке А, есть бананы, подвешенные в точке B, и есть коробка в точке C, забравшись на которую обезьяна сможет схватить бананы:

Initial state: At(A), Level(low), BoxAt(C), BananasAt(B)
Goal state: Have(Bananas)
Actions:
// move from X to Y
_Move(X, Y)_
Preconditions: At(X), Level(low)
Postconditions: not At(X), At(Y)

// climb up on the box
_ClimbUp(Location)_
Preconditions: At(Location), BoxAt(Location), Level(low)
Postconditions: Level(high), not Level(low)

// climb down from the box
_ClimbDown(Location)_
Preconditions: At(Location), BoxAt(Location), Level(high)
Postconditions: Level(low), not Level(high)

// move monkey and box from X to Y
_MoveBox(X, Y)_
Preconditions: At(X), BoxAt(X), Level(low)
Postconditions: BoxAt(Y), not BoxAt(X), At(Y), not At(X)

// take the bananas
_TakeBananas(Location)_
Preconditions: At(Location), BananasAt(Location), Level(high)
Postconditions: Have(bananas)

Согласитесь, на таком языке хочется попробовать что-то написать самому.

POP-11

Возвращаясь в 60-е годы к первым серьёзным попыткам создать искусственный интеллект, нельзя не упомянуть о языке POP-1, испытавшем на себе влияние многих языков того времени, но не снискавшего славу. К слову, POP-2 был куда успешнее и даже дожил до наших днейю На сегодняшний день актуальной является версия POP-11, предназначенная для работы со средой разработки Poplog (правда, в ней вы также можете использовать LISP, Prolog и Standard ML).

Язык POP-11 является функциональным и мультипарадигмальным, синтаксис заимствован от ALGOL, общий подход к коду больше похож на LISP. Вот маленький отрывок из кода работы с памятью:

define auxmemo(O1, Prop, P,n, ref_i)->O2;

;;; P: Procedure
;;; n: number of values to keep, then the cache is cleared and
;;; memoizing restarts.
;;;
define newmemo(P,n);
newanyproperty([], n, false, false, syshash, nonop=, false, undef,
auxmemo(%P,n,consref(n)%));
enddefine;

Как видно, здесь нет ничего отпугивающего и сильно отличающегося от привычного внешнего вида популярных процедурных языков. Возможности при этом достаточно широкие — от систем обучения до уже упомянутого искусственного интеллекта Элиза.

Wolfram

Язык, разработанный компанией Wolfram Research, входящий в комплект системы компьютерной алгебры Mathematica. Язык мультипарадигмальный, специализирующийся на символических вычислениях, на логическом и функциональном программировании. Несмотря на то, что язык существует с конца 80-х годов 20 века, выпущен официально он был лишь 4 года назад.

Конечно, Wolfram не был разработан специально для искусственного интеллекта, но как и MATLAB, в конце концов пришёл к необходимости обрабатывать данные с учетом моделирования и прогнозирования, работать с нейронными сетями.

Кстати, вот интересный факт, косвенно связанный с Wolfram. Язык пришельцев, который вы могли видеть в недавнем фильме «Прибытие», был разработан создателями Wolfram (отцом и сыном) и частично унаследовал его алгоритмы.

Planner

Последний на сегодня по порядку, но совсем не последний по востребованности, функционально-логический язык Planner. Разработан он был на стыке 60-х и 70-х годов 20 века в MIT и был призван расширить возможности тогда уже популярного языка LISP. В синтаксисе это выражается в повышении удобочитаемости, вызванной, к примеру, возможностью использовать и круглые, и квадратные скобки. Но конечно совсем не это главная его суть.

Главное удобство Planner — это механизмы работы с переменными средами и задачами. При разработке ИИ вы задаёте начальные условия, так называемые «теоремы», описывающие используемую среду. Теорем при этом может быть много, просто в случае несоответствия среды исходные будут отвергаться, а другие подтверждаться. Также в процессе выполнения программы и механизмах перебора могут отвергаться и исключаться из дальнейшего рассмотрения определённые решения, которые не имеют конечного успеха. Обычно подобные вещи программисту приходится реализовывать самостоятельно большим объёмом текста, но в Planner это занимает всего несколько строк. А ведь именно это и есть главный принцип, отличающий язык ИИ от любого другого популярного языка.

Источник

Поделиться с друзьями
admin
Оцените автора
( Пока оценок нет )
Как переводится?
Adblock
detector