Язык двоичного кода перевод

двоичный код в текст

Преобразуйте двоичный текст в текстовый / английский или ASCII, используя prepostseoБинарный переводчик. Введите двоичные числа (например, 01000101 01111000 01100001 01101101 01110000 01101100 01100101) и нажмите кнопку Преобразовать

Двоичный переводчик

Двоичная система счисления

Система двоичного декодера основана на числе 2 (основание). Он состоит только из двух чисел как системы счисления base-2: 0 и 1.

Хотя бинарная система применялась в различных целях в древнем Египте, Китае и Индии, она стала языком электроники и компьютеров современного мира. Это наиболее эффективная система для обнаружения выключенного (0) и включенного (1) состояния электрического сигнала. Это также основа двоичного кода в текст, который используется на компьютерах для составления данных. Даже цифровой текст, который вы сейчас читаете, состоит из двоичных чисел. Но вы можете прочитать этот текст, потому что мы расшифровали двоичный код перевод файл, используя двоичный код слова.

Двоичное число легче прочитать, чем выглядит: это позиционная система; поэтому каждая цифра двоичного числа возводится в степень 2, начиная с 20 справа. Каждая двоичная цифра в преобразователе двоичного кода относится к 1 биту.

Что такое ASCII?

Бинарный в ASCII

Первоначально основанный на английском алфавите, ASCII кодирует 128 указанных семибитных целочисленных символов. Можно печатать 95 кодированных символов, включая цифры от 0 до 9, строчные буквы от a до z, прописные буквы от A до Z и символы пунктуации. Кроме того, 33 непечатных контрольных кода, полученных с помощью машин Teletype, были включены в исходную спецификацию ASCII; большинство из них в настоящее время устарели, хотя некоторые все еще широко используются, такие как возврат каретки, перевод строки и коды табуляции.

Использование ASCII

Как уже упоминалось выше, используя ASCII, вы можете перевести компьютерный текст в человеческий текст. Проще говоря, это переводчик с бинарного на английский. Все компьютеры получают сообщения в двоичном, 0 и 1 серии. Тем не менее, так же, как английский и испанский могут использовать один и тот же алфавит, но для многих похожих слов у них совершенно разные слова, у компьютеров также есть своя языковая версия. ASCII используется как метод, который позволяет всем компьютерам обмениваться документами и файлами на одном языке.

ASCII важен, потому что при разработке компьютерам был дан общий язык.

До декабря 2007 года, когда кодировка UTF-8 превосходила ее, ASCII была наиболее распространенной кодировкой символов во Всемирной паутине; UTF-8 обратно совместим с ASCII.

UTF-8 (Юникод)

Unicode и универсальный набор символов (UCS) ISO / IEC 10646 имеют гораздо более широкий диапазон символов, и их различные формы кодирования начали быстро заменять ISO / IEC 8859 и ASCII во многих ситуациях. Хотя ASCII ограничен 128 символами, Unicode и UCS поддерживают большее количество символов посредством разделения уникальных концепций идентификации (с использованием натуральных чисел, называемых кодовыми точками) и кодирования (до двоичных форматов UTF-8, UTF-16 и UTF-32-битных). ).

Разница между ASCII и UTF-8

ASCII был включен как первые 128 символов в набор символов Unicode (1991), поэтому 7-разрядные символы ASCII в обоих наборах имеют одинаковые числовые коды. Это позволяет UTF-8 быть совместимым с 7-битным ASCII, поскольку файл UTF-8 с только символами ASCII идентичен файлу ASCII с той же последовательностью символов. Что еще более важно, прямая совместимость обеспечивается, поскольку программное обеспечение, которое распознает только 7-битные символы ASCII как специальные и не изменяет байты с самым высоким установленным битом (как это часто делается для поддержки 8-битных расширений ASCII, таких как ISO-8859-1), будет сохранить неизмененные данные UTF-8.

Приложения переводчика двоичного кода

• Наиболее распространенное применение для этой системы счисления можно увидеть в компьютерных технологиях. В конце концов, основой всего компьютерного языка и программирования является двузначная система счисления, используемая в цифровом кодировании.

• Это то, что составляет процесс цифрового кодирования, беря данные и затем изображая их с ограниченными битами информации. Ограниченная информация состоит из нулей и единиц двоичной системы. Изображения на экране вашего компьютера являются примером этого. Для кодирования этих изображений для каждого пикселя используется двоичная строка.

• Если на экране используется 16-битный код, каждому пикселю будут даны инструкции, какой цвет отображать на основе того, какие биты равны 0 и 1. В результате получается более 65 000 цветов, представленных 2 ^ 16. В дополнение к этому вы найдете применение двоичной системы счисления в математической ветви, известной как булева алгебра.

• Ценности логики и истины относятся к этой области математики. В этом приложении заявлениям присваивается 0 или 1 в зависимости от того, являются ли они истинными или ложными. Вы можете попробовать преобразование двоичного в текстовое, десятичное в двоичное, двоичное в десятичное преобразование, если вы ищете инструмент, который помогает в этом приложении.

Преимущество двоичной системы счисления

Система двоичных чисел полезна для ряда вещей. Например, компьютер щелкает переключателями для добавления чисел. Вы можете стимулировать добавление компьютера, добавляя двоичные числа в систему. В настоящее время есть две основные причины использования этой компьютерной системы счисления. Во-первых, это может обеспечить надежность диапазона безопасности. Вторично и самое главное, это помогает минимизировать необходимые схемы. Это уменьшает необходимое пространство, потребляемую энергию и расходы.

Интересный факт

Вы можете кодировать или переводить двоичные сообщения, написанные двоичными числами. Например,

(01101001) (01101100011011110111011001100101) (011110010110111101110101) является декодированным сообщением. Когда вы скопируете и вставите эти цифры в наш бинарный переводчик, вы получите следующий текст на английском языке:

(01101001) (01101100011011110111011001100101) (011110010110111101110101) = Я тебя люблю

Источник

Двоичное счисление на пальцах

Все знают, что компьютеры состоят из единиц и нулей. Но что это значит на самом деле?

Если у вас в школе была информатика, не исключено, что там было упражнение на перевод обычных чисел в двоичную систему и обратно. Маловероятно, что кто-то вам объяснял практический смысл этой процедуры и откуда вообще берётся двоичное счисление. Давайте закроем этот разрыв.

Отличный план

Чтобы объяснить всё это, нам понадобится несколько тезисов:

Система записи — это шифр

Если у нас есть девять коров, мы можем записать их как 🐄🐄🐄🐄🐄🐄🐄🐄🐄 или как 9 × 🐄.

Почему 9 означает «девять»? И почему вообще есть такое слово? Почему такое количество мы называем этим словом? Вопрос философский, и короткий ответ — нам нужно одинаково называть числа, чтобы друг друга понимать. Слово «девять», цифра 9, а также остальные слова — это шифр, который мы выучили в школе, чтобы друг с другом общаться.

Допустим, к нашему стаду прибиваются ещё 🐄🐄🐄. Теперь у нас 🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄 — двенадцать коров, 12. Почему мы знаем, что 12 — это «двенадцать»? Потому что мы договорились так шифровать числа.

Нам очень легко расшифровывать записи типа 12, 1920, 100 500 и т. д. — мы к ним привыкли, мы учили это в школе. Но это шифр. 12 ×🐄 — это не то же самое, что 🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄. Это некая абстракция, которой мы пользуемся, чтобы упростить себе счёт.

Мы привыкли шифровать десятью знаками

У нас есть знаки 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9 — всего десять знаков. Этим числом знаков мы шифруем количество единиц, десятков, сотен, тысяч и так далее.

Мы договорились, что нам важен порядок записи числа. Мы знаем, что самый правый знак в записи означает число единиц, следующий знак (влево) означает число десятков, потом сотен и далее.

Например, перед нами число 19 547. Мы знаем, что в нём есть:

Если приглядеться, то каждый следующий разряд числа показывает следующую степень десятки:

Нам удобно считать степенями десятки, потому что у нас по десять пальцев и мы с раннего детства научились считать до десяти.

Система записи — это условность

Представим бредовую ситуацию: у нас не 10 пальцев, а 6. И в школе нас учили считать не десятками, а шестёрками. И вместо привычных цифр мы бы использовали знаки ØABCDE. Ø — это по-нашему ноль, A — 1, B — 2, E — 5.

Вот как выглядели бы привычные нам цифры в этой бредовой системе счисления:

В этой системе мы считаем степенями шестёрки. Число ABADØ можно было бы перевести в привычную нам десятичную запись вот так:

A × 6⁴ = 1 × 1296 = 1296
B × 6³ = 2 × 216 = 432
A × 6² = 1 × 36 = 36
D × 6¹ = 4 × 6 = 24
Ø × 6⁰ = 0 × 1 = 0
1296 + 143 + 34 + 24 + 0 = 1497. В нашей десятичной системе это 1497, а у людей из параллельной вселенной это ABADØ, и это равноценно.

Выглядит бредово, но попробуйте вообразить, что у нас в сумме всего шесть пальцев. Каждый столбик — как раз шесть чисел. Очень легко считать в уме. Если бы нас с детства учили считать шестёрками, мы бы спокойно выучили этот способ и без проблем всё считали. А счёт десятками вызывал бы у нас искреннее недоумение: «Что за бред, считать числом AD? Гораздо удобнее считать от Ø до E!»

То, как мы шифруем и записываем числа, — это следствие многовековой традиции и физиологии. Вселенной, космосу, природе и стадам коров глубоко безразлично, что мы считаем степенями десятки. Природа не укладывается в эту нашу систему счёта.

Например, свет распространяется в вакууме со скоростью 299 792 458 метров в секунду. Ему плевать, что нам для ровного счёта хотелось бы, чтобы он летел со скоростью 300 тысяч километров в секунду. А ускорение свободного падения тела возле поверхности Земли — 9,81 м/с². Так и хочется спросить: «Тело, а ты не могло бы иметь ускорение 10 м/с²?» — но телу плевать на наши системы счисления.

Двоичная система (тоже нормальная)

Внутри компьютера работают транзисторы. У них нет знаков 0, 1, 2, 3… 9. Транзисторы могут быть только включёнными и выключенными — обозначим их 💡 и ⚫.

Мы можем научить компьютер шифровать наши числа этими транзисторами так же, как шестипалые люди шифровали наши числа буквами. Только у нас будет не 6 букв, а всего две: 💡 и ⚫. И выходит, что в каждом разряде будет стоять не число десяток в разной степени, не число шестёрок в разной степени, а число… двоек в разной степени. И так как у нас всего два знака, то получается, что мы можем обозначить либо наличие двойки в какой-то степени, либо отсутствие:

Если перед нами число 💡 ⚫💡⚫⚫ 💡💡⚫⚫, мы можем разложить его на разряды, как в предыдущих примерах:

256 + 0 + 64 + 0 + 0 + 8 + 4 + 0 + 0 = 332

Получается, что десятипалые люди могут записать это число с помощью цифр 332, а компьютер с транзисторами — последовательностью транзисторов 💡⚫💡⚫⚫ 💡💡⚫⚫.

Если теперь заменить включённые транзисторы на единицы, а выключенные на нули, получится запись 1 0100 1100. Это и есть наша двоичная запись того же самого числа.

Почему говорят, что компьютер состоит из единиц и нулей (и всё тлен)

Инженеры научились шифровать привычные для нас числа в последовательность включённых и выключенных транзисторов.

Дальше эти суммы научились получать супербыстро. Потом научились получать разницу. Потом умножать. Потом делить. Потом всё это тоже научились делать супербыстро. Потом научились шифровать не только числа, но и буквы. Научились их хранить и считывать. Научились шифровать цвета и координаты. Научились хранить картинки. Последовательности картинок. Видео. Инструкции для компьютера. Программы. Операционные системы. Игры. Нейросети. Дипфейки.

И всё это основано на том, что компьютер умеет быстро-быстро складывать числа, зашифрованные как последовательности включённых и выключенных транзисторов.

При этом компьютер не понимает, что он делает. Он просто гоняет ток по транзисторам. Транзисторы не понимают, что они делают. По ним просто бежит ток. Лишь люди придают всему этому смысл.

Когда человека не станет, скорость света будет по-прежнему 299 792 458 метров в секунду. Но уже не будет тех, кто примется считать метры и секунды. Такие дела.

Источник

Расшифровка бинарного кода применяется для перевода с машинного языка на обычный. Онлайн инструменты работают быстро, хотя даже вручную это сделать несложно.

Бинарный или двоичный код используется для передачи информации в цифровом виде. Набор из всего лишь двух символов, например 1 и 0, позволяет зашифровать любую информацию, будь то слова, цифры или изображение.

Расшифровка файлов онлайн

Как шифровать бинарным кодом

Для ручного перевода в двоичный код любых символов используются таблицы, в которых каждому символу присвоен набор нулей и единиц. Наиболее распространенной системой кодировки является ASCII, где применяется 8-ми битная запись, позволяющая читать binary code и делать преобразование текста.

Базовая таблица содержит бинарные коды для латинской азбуки, цифр, некоторых символов.

В расширенную таблицу добавлена интерпретация кириллицы и дополнительных знаков.

расширенная таблица расшифровки

Для перевода из двоичного кода в текст или цифры достаточно выбирать нужные набры символов из таблиц. Но, естественно, вручную такую работу выполнять долго. И ошибки, к тому же, неизбежны. Компьютер справляется с расшифровкой куда быстрее. И мы даже не задумываемся, набирая на экране слова, что одновременно производится перевод текста в бинарный код.

Перевод бинарного числа в десятичное

Для ручного перевода числа из бинарной системы счисления в десятичную можно использовать довольно простой алгоритм:

Вот как этот алгоритм выглядит на бумаге:

перевод двоичного кода в десятичное число

Онлайн сервисы для расшифровки

Если все же требуется увидеть расшифрованный бинарный код, раскодировать слова, либо, наоборот, перевести их в двоичную форму, проще всего использовать онлайн-сервисы, предназначенные для этих целей.

Удобный инструмент можно найти по этой ссылке:
https://dev20.ru/bin-text

Два окна, привычных для онлайн-переводов позволяют практически одновременно увидеть оба варианта документа в обычной и бинарной форме. Расшифровка осуществляется в обе стороны. Ввод текста на русском или английском языках производится простым копированием и вставкой.

Источник

Поделиться с друзьями
admin
Оцените автора
( Пока оценок нет )
Как переводится?
Adblock
detector